Judul : Prinsip Pengawetan Pangan
Penulis : Retno Widyani dan Tety Suciaty
Manfaat
Pembekuan memberikan berbagai manfaat dalam penyimpanan produk pangan terutama bagi industri pangan, misalnya untuk menghambat penurunan kadar nutrisi, menghambat pertumbuhan mikroorganisme perusak pangan dan bahkan pada beberapa produk pangan memberikan manfaat organoleptik (rasa pangan yang lebih enak). Kebutuhan pembekuan ini juga sangat dirasakan pada pengiriman dan transportasi produk-produk pangan dari produsen ke tangan konsumen.
Pada umumnya pembekuan produk pangan menggunakan teknologi pembekuan (refrigerant) konvensional berbahan pendingin amonia atau di masa lalu menggunakan freon-CFC (chloroflurocarbon) yang ternyata terbukti menjadi gas-gas penyebab kerusakan ozon. Teknologi pembekuan seperti ini juga telah ditemukan memiliki kelemahan karena tingkat pendinginan yang kurang rendah suhunya dan relatif tidak stabil sehingga tidak menjamin keawetan produk pangan yang dibekukan. Pada penggunaan ammonia sebagai bahan pendingin, suhu terdingin yang dapat dicapai untuk refrigeran produk pangan yaitu antara -1 derajat Celsius sampai dengan -46 derajat Celsius.
Teknologi Kriogenik
Kriogenik (cryogenic) merupakan salah satu teknologi pembekuan yang sebetulnya bukan tergolong ide yang baru. Metode pembekuan pada teknologi ini menggunakan gas yang dimampatkan menjadi cairan (liquid) misalnya nitrogen (N2) dan karbon dioksida (CO2). Nitrogen cair sebagaimana telah diketahui sejak lama, dipergunakan sebagai pembeku bahan-bahan organik untuk keperluan penyimpanan dan ekstraksi bahan-bahan penelitian bidang biologi terapan. Karbon dioksida cair pun telah sejak lama dipergunakan untuk pengisi tabung pemadam kebakaran.
Nitrogen cair memiliki titik didih pada suhu -195,8 derajat Celsius, sedangkan karbon dioksida cair -57 derajat Celsius. Pada suhu yang lebih tinggi dari suhu tersebut, nitrogen dan karbon dioksida akan berbentuk gas volatil, sehingga umumnya nitrogen cair dan karbon dioksida cair berada pada suhu lebih rendah daripada titik didihnya. Dengan suhu yang sedemikian dingin, baik nitrogen cair maupun karbon dioksida cair mempunyai kemampuan membekukan bahan organik yang relatif lebih efektif daripada pendingin berbahan amonia ataupun freon. Suntory, sebuah perusahaan minuman di Jepang mengunakan metode cryogenic ini sebagai metode baru untuk produksi minuman sehingga kualitas kesegaran minuman terjaga. Dalam kondisi suhu -195 derajat celcius buah dihancurkan menjadi tepung kemudian dibuat minuman.
Di negara-negara maju, studi mengenai aplikasi teknologi kriogenik untuk pembekuan produk pangan telah dimulai sejak dekade 1990-an. Beberapa kelebihan teknologi kriogenik untuk pembekuan produk pangan dibandingkan teknologi pembekuan konvensional telah ditemukan, di antaranya yaitu :
teknologi kriogenik mempunyai kemampuan mencegah rusaknya adenosintrifosfat (ATP) pada produk pangan laut segar selama periode penyimpanan.
mampu mempercepat pembekuan produk pangan seperti daging dan telur.
menghambat pertumbuhan mikroorganisme perusak produk pangan lebih baik.
mencegah rusaknya nutrisi produk pangan lebih baik.
Pada saat ini studi mengenai aplikasi teknologi kriogenik untuk pembekuan produk pangan lebih diarahkan pada perancangan kontainer atau jaket pendingin, mengingat gas cair seperti nitrogen cair dianggap terlalu berbahaya untuk dibawa seenaknya dalam transportasi produk pangan. Selain itu studi juga diarahkan kepada stabilitas suhu disertai perancangan pengontrolnya, dan selanjutnya variasi produk pangan yang dapat dibekukan secara efektif dengan teknologi kriogenik. Dan yang paling mutakhir saat ini yaitu upaya menggunakan teknologi nano material dalam rangka mencari bahan terbaik untuk digunakan sebagai kontainer atau jaket pendingin kriogenik termasuk pipa vakum kriogeniknya.
Pembekuan merupakan suatu cara pengawetan bahan pangan dengan cara membekukan bahan pada suhu di bawah titik beku pangan tersebut. Dengan membekunya sebagian kandungan air bahan atau dengan terbentuknya es (ketersediaan air menurun), maka kegiatan enzim dan jasad renik dapat dihambat atau dihentikan sehingga dapat mempertahankan mutu bahan pangan. Mutu hasil pembekuan masih mendekati buah segar walaupun tidak dapat dibandingkan dengan mutu hasil pendinginan. Pembekuan dapat mempertahankan rasa dan nilai gizi bahan pangan yang lebih baik daripada metoda lain, karena pengawetan dengan suhu rendah (pembekuan) dapat menghambat aktivitas mikroba mencegah terjadinya reaksi-reaksi kimia dan aktivitas enzim yang dapat merusak kandungan gizi bahan pangan. Walaupun pembekuan dapat mereduksi jumlah mikroba yang sangat nyata tetapi tidak dapat mensterilkan makanan dari mikroba (Frazier, 1977) Menurut Tambunan (1999), pembekuan berarti pemindahan panas dari bahan yang disertai dengan perubahan fase dari cair ke padat, dan merupakan salah satu proses pengawetan yang umum dilakukan untuk penanganan bahan pangan. Pada proses pembekuan, penurunan suhu akan menurunkan aktifitas mikroorganisma dan sistem enzim, sehingga mencegah kerusakan bahan pangan. Selain itu, kristalisasi air akibat pembekuan akan mengurangi kadar air bahan dalam fase cair di dalam bahan pangan tersebut sehingga menghambat pertumbuhan mikroba atau aktivitas sekunder enzim. Proses pembekuan terjadi secara bertahap dari permukaan sampai pusat bahan. Pada pemukaan bahan, pembekuan berlangsung cepat sedangkan pada bagian yang lebih dalam, proses pembekuan berlangsung lambat (Brennan, 1981).
Pada awal proses pembekuan, terjadi fase precooling dimana suhu bahan diturunkan dari suhu awal ke suhu titik beku. Pada tahap ini semua kandungan air bahan berada pada keadaan cair (Holdworth, 1968). Setelah tahap precooling terjadi tahap perubahan fase, pada tahap ini terjadi pembentukan kristal es (Heldman dan Singh, 1981).
Titik Beku Bahan Pangan
Sel-sel hidup banyak mengandung air, sering kali sampai dua pertiga atau lebih dari jumlah beratnya. Di dalam medium ini banyak terlarut senyawa organic dan anorganik, termasuk garam, gula, dan asam dalam bentuk larutan, juga termasuk molekul organic yang lebih kompleks seperti protein dalam bentuk suspensi koloidal. Sedikit banyak juga terdapat gas-gas yang terlarut dalam larutan yang berair. Perubahan-perubahan fisik, kimia dan biologis yang terjadi di dalam bahan pangan selama pembekuan dan pencairan merupakan proses yang sangat kompleks dan belum seluruhnya diketahui. Walaupun demikian sangat bermanfaat mempelajari perilaku perubahan-perubahan ini. Sehingga dapat dirancang suatu proses pembekuan bahan pangan dengan berhasil.
Titik beku suatu cairan adalah suhu di mana cairan tersebut dalam keadaan seimbang dengan bentuk padatnya. Suatu larutan dengan tekanan uap yang lebih rendah dari zat pelarut murni tidak akan seimbang dengan zat pelarut yang padat pada titik beku normalnya. Sistem tersebut harus didinginkan sampai suhu dimana larutan dan zat pelarut yang padat mempunyai tekanan yang sama. Titik beku suatu larutan adalah lebih rendah daripada zat pelarut murni. Titik beku bahan pangan adalah lebih rendah daripada air murni.
Bilamana suatu cairan menguap, molekul-molekul yang lepas memberikan suatu tekanan yang dikenal dengan tekanan uap. Tekanan total dari suatu system akan sama dengan tekanan parsial dari tekanan tersebut. Penambahan zat terlarut yang bersifat tidak menguap (gula) ke dalam air akan menurunkan tekanan uap air dari larutan gula dalam air, dan titik beku larutan tersebut akan menjadi lebih rendah daripada air murni. Oleh karena kebanyakan bahan pangan kandungan dan airnya tinggi maka kebanyakan pangan akan membeku pada suhu antara 25-350F. Selama berlangsung pembekuan suhu bahan pangan tersebut relatif tetap sampai sebagian besar dari bahan pangan tersebut membeku, dan setelah beberapa waktu suhu akan mendekati medium pembeku.
Laju Pembekuan
Salah satu pertimbangan pemilihan suatu proses dalam industri pembekuan pangan beku adalah laju pembekuan. Laju pembekuan tidak saja menentukan struktur akhir produk beku, tetapi juga mempengaruhi lama pembekuan (Heldman dan Singh, 1981). Menurut Lembaga Refrigerasi International (1971), laju pembekuan suatu massa pangan adalah ratio antara jarak minimal antara permukaan dengan titik pusat termal dibanding dengan waktu yang diperlukan oleh produk pangan mencapai suhu 00C pada permukaan bahan sampai mencapai suhu -50C pada pusat termal bahan.
Salah satu variasi terhadap definisi Lembaga Refrigerasi International ialah Thermal Arrest Time (TAR), menurut definisi ini, laju pembekuan ialah pengukuran waktu yang dibutuhkan menurunkan suhu dari titik yang paling lambat membeku pada produk, untuk 0oC menjadi –5oC. Sedangkan Heldman dan Singh (1981) mengatakan laju pembekuan ialah pengukuran waktu yang dibutuhkan untuk menurunkan suhu produk pada titik yang paling lambat menjadi dingin atau beku, dihitung dari saat tercapainya titik beku awal sampai tercapainya tingkat suhu yang diinginkan di bawah titik beku produk tersebut. Meskipun disadari bahwa definisi ini tidak terlepas dari kekurangan, agaknya masih merupakan kompromi terbaik bila dibandingkan dengan keunggulan dan kelemahan definisi lain. (Heldman dan Singh, 1981). Laju pembekuan dapat diatur dan sangat menentukan sifat dan mutu produk beku yang dihasilkan. Sifat produk yang diakibatkan oleh pembekuan yang sangat cepat sangat berbeda dari produk yang dihasilkan dari pembekuan lambat. Pembekuan yang sangat cepat akan menghasilkan kristal es yang kecil tersusun secara merata pada jaringan. Sedangkan pembekuan lambat akan menyebabkan terbentuknya kristal es yang besar yang tersusun pada ruang antar sel dengan ukuran pori yang besar. Dari segi kecepatan berproduksi, pembekuan secara sangat cepat dianggap menguntungkan, selama mutu produk yang dihasilkan tidak dikorbankan (Heldman dan Singh, 1981). King (1971) membagi laju pembekuan ke dalam 3 golongan yaitu ;
Pembekuan lambat, jika waktu pembekuan adalah 30 menit atau lebih untuk 1 cm bahan yang dibekukan,
Pembekuan sedang , jika waktu pembekuan adalah 20-30 menit atau lebih untuk 1 cm bahan yang dibekukan dan,
Pembekuan cepat, jika waktu pembekuan adalah kurang dari 20 menit untuk 1 cm bahan yang dibekukan. Pembekuan cepat didefinisikan oleh mereka yang menganut teori kristalisasi cepat sebagai proses dimana suhu bahan pangan tersebut melampaui zona pembekuan 32 sampai 250 F dalam waktu 30 menit atau kurang.
Prinsip kristal maksimum dasar dari semua pembekuan cepat adalah cepatnya pengambilan panas dari bahan pangan. Metode ini meliputi pembekuan dalam hembusan cepat udara dingin, dengan imersi langsung bahan pangan ke dalam medium pendingin, dengan jalan persinggungan plat-plat pendingin dalam ruang pembekuan, dan dengan pembekuan dengan udara, nitrogen, karbondioksida cair.
Pembekuan dilakukan dengan maksud untuk mengawetkan atau mempertahankan sifat-sifat alami bahan pangan. Pembekuan menggunakan suhu yang lebih rendah. Pembekuan mengubah hampir seluruh kandungan air bahan pangan menjadi es. Metode pembekuan dapat dilakukan dengan menggunakan udara dingin yang ditiupkan dengan suhu rendah kontak langsung dengan bahan pangan atau kontak tidak langsung misalnya alat pembeku lempeng dimana makanan atau cairan yang telah dikemas kontak dengan permukaan logam yang telah didinginkan dengan mensirkulasikan cairan pendingin, perendaman langsung bahan pangan dengan cairan pendingin atau menyemprotkan cairan pendingin. Cairan pendingin tersebut dapat berupa freon, nitrogen cair, larutan garam atau gula.
Perlakuan pembekuan untuk setiap produk tergantung dari mutu produk dan tingkat pembekuan yang diinginkan, tipe dan produk pengemasan, fleksibilitas yang dibutuhkan dalam operasi pembekuan dan biaya pembekuan untuk teknik alternatif. Pembekuan merupakan metode yang sangat baik untuk pengawetan bahan pangan terutama pada daging dan daging proses. Penyegaran kembali bahan pangan yang sudah beku disebut thawing, dapat dilakukan dengan perantaraan:
Udara dingin misalnya alat pendingin atau refrigerator
Air hangat
Air pada suhu kamar
Pemasakan langsung tanpa penyegaran kembali
Udara terbuka.
Pengeringan beku (freeze drying) adalah salah satu metoda pengeringan yang mempunyai keunggulan dalam mempertahankan mutu hasil pengeringan, khususnya untuk produk-produk yang sensitif terhadap panas. Keunggulan pengeringan beku, dibandingkan metoda lainnya, antara lain adalah (Melor, 1978) :
Dapat mempertahankan stabilitas produk (menghindari perubahan aroma, warna, dan unsur organoleptik lain).
Dapat mempertahankan stabilitas struktur bahan (pengkerutan dan perubahan bentuk setelah pengeringan sangat kecil).
Dapat meningkatkan daya rehidrasi (hasil pengeringan sangat berongga dan lyophile sehingga daya rehidrasi sangat tinggi dan dapat kembali ke sifat fisiologis, organoleptik dan bentuk fisik yang hampir sama dengan sebelum pengeringan).
Keunggulan-keunggulan tersebut tentu saja dapat diperoleh jika prosedur dan proses pengeringan beku yang diterapkan tepat dan sesuai dengan karakteristik bahan yang dikeringkan. Kondisi operasional tertentu yang sesuai dengan suatu jenis produk tidak menjamin akan sesuai dengan produk jenis lain. Dalam hal ini, penelitian rinci mengenai karakteristik pengeringan beku berbagai jenis produk sangat diperlukan karena masih sangat terbatas, khususnya untuk produk-produk khas Indonesia. Pengeringan beku merupakan prosedur yang umum diterapkan pada kategori bahan, sebagai berikut:
Bahan pangan dan bahan farmasi (obatan)
Plasma darah, serum, larutan hormon,
Organ untuk transplantasi
Sel hidup, untuk mempertahankan daya hidupnya dalam jangka waktu yang lama.
Pengeringan beku bahan pangan masih jarang dilakukan, karena biaya pengeringan yang relatif mahal dibandingkan harga bahan pangan tersebut. Salah satu penyebabnya adalah tingginya resistensi terhadap perpindahan panas selama periode akhir pengeringan yang menyebabkan lambatnya laju pengeringan dan, sebagai konsekuensinya, meningkatnya biaya operasi. Akan tetapi, disamping pembuatan kopi instan dengan pengeringan beku, yang sejak lama telah dilakukan secara komersil, akhir-akhir ini produk hasil pengeringan beku semakin marak di pasar internasional, seperti udang kering beku dan durian kering beku.
Berbagai usaha telah dilakukan untuk meningkatkan laju pengeringan tersebut, diantaranya dengan menerapkan sistem pemanasan volumetrik menggunakan energi gelombang elektromagnetik (gelombang mikro dan frekuensi radio), dan mengatur siklus tekanan dan pemanasan selama pengeringan untuk meningkatkan konduktivitas panas dan permeabilitas uap air bagian kering bahan (Tambunan, 1999; Araki et al, 1998). Terlepas dari berbagai usaha tersebut, optimalisasi proses pengeringan beku harus dimulai dari pemahaman mendalam mengenai mekanisme pengeringan beku tersebut. Tulisan ini akan membahas tentang mekanisme pengeringan beku beberapa bahan pangan atau produk pertanian.
Secara umum dapat dikatakan bahwa pengeringan beku merupakan metoda pengeringan yang terbaik dalam mempertahankan mutu hasil pengeringan, khususnya untuk bahan-bahan yang sensitif terhadap panas. Meskipun demikian, mutu prima hasil pengeringan beku hanya dapat diperoleh melalui prosedur dan proses yang tepat dengan bahan yang dikering-bekukan tersebut. Untuk itu, penelitian terhadap karakteristik pengeringan beku berbagai produk, khususnya produk khas Indonesia seperti buahan eksotik, hasil perkebunan, bahan ramuan obatan tradisional (jamu), dan produk perairan, masih perlu dilakukan karena masih sangat langka. Data karakteristik pengeringan beku tersebut sangat bermanfaat untuk menentukan kondisi operasi pengeringan beku yang optimal untuk masing-masing produk tersebut. Disamping itu, metoda pengeringan beku secara ekonomis membutuhkan biaya investasi dan biaya operasional yang tinggi, sehingga dengan prosedur operasi yang optimal, diharapkan hal tersebut dapat diatasi.
DAFTAR PUSTAKA
Anonimous. 2003. Keamanan Pangan. Badan POM. Jakarta.
Anonimous. 2003. Peraturan di Bidang Pangan. Badan POM.
Jakarta.
Anonimous. 2003. Perencanaan, Pengendalian dan Peningkatan
Mutu. Badan POM. Jakarta.
Apriantono, A. 1985. Panduan Praktikum Pembuatan Manisan
Buah-buahan. Diklat Penyuluhan Spesialis Industri Kecil
Pengolahan Pangan. Departemen Pertanian dan Fateta IPB.
Brennan, J.G., 1981. Food Freezing Operation. Applied Science
Publisher, Ltd.
Buckle, K.A., R. A. Edwards, G.H. Fleet and M. Woolton., 1987. Ilmu
Pangan. Penerbit Universitas Indonesia. Jakarta.
Desrosier, N.W., 1988. Teknologi Pengawetan Pangan; Penerjemah
Muchji. Paris. Food. 2 Co. Inc. New York.
Frazier, W.C. and P.C. Westhoff, 1977. Food Microbiology. Mc.
Graw Hill Book
Gautara, S.W. 1985. Dasar Pengolahan Gula II. Agroindustri Press.
Fateta IPB. Bogor.
Glubrecht. 1987. Basic Effect of Radiation on Matter Food
Preservation by Irradiation. Vol. 1. IAEA Vienna.
Heddy, S, Wahono Budi Santosa dan Metty Kurniawati. 1994.
Pengantar Produksi Tanaman dan Penanganan
Pascapanen. PT Raja Grafindo, Jakarta.
Hermana. 1991. Iradiasi Pangan. Cara Mengawetkan dan Meningkatkan Keamanan Pangan. Penerbit ITB Bandung.
Holdworth, S.D., 1968. Current aspects of Preseruation by
Freezing. Food Manuf, 43(7):38
Jay, J.M. 1996. Modern Food Microbiology. Chapman & Hall,
International Thomson Publishing, New York.
King, C.J., 1971. Freeze Drying of Food CRC. The Chemical Rubber
Co., Cleveland- Ohio.
Lembaga Refrigerasi Internasional,1971. Internasional Institute Of
Refrigeration, Recommendations for The Processing and Handling for Frozen nd London.
Maha, M. 1981. Prospek Penggunaan Teknik Nuklir dalam Bidang Teknologi Pangan. PAIR-BATAN , Jakarta.
Maha, M. 1985. Pengawetan Pangan dengan Radiasi. Pusat Aplikasi Isotop dan Radiasi. PAIR-BATAN, Jakarta.
Muljohadjo, Penerbit Universitas Indonesia, Jakarta.
Norman W Desrosier. 1988. Teknologi Pengawetan Pangan. UI
Press. Jakarta.
Purnomo. 1987. Ilmu Pangan. UI Press. Jakarta.
Purwanto, Z.I. dan M. Maha. 1993. Aplikasi Iradiasi dalam
Teknik Pengawetan Makanan. PAIR-BATAN, Jakarta.
Rasyaf, M. 1996. Memasarkan Hasil Peternakan. PT Penebar
Swadaya. Jakarta.
Retno Widyani. 2001. Pengantan Ilmu Pangan. Diktat Kuliah.
Program Pascasarjana Universitas Swadaya Gunung Jati.
Cirebon.
Retno Widyani. 2001. Prinsip Pengawetan Pangan. Diktat Kuliah.
Program Pascasarjana Universitas Swadaya Gunung Jati.
Cirebon.
Simatupang, P.S.M. 1993. Aspek Pengaturan Makanan Iradiasi. Risalah Seminar Nasional Pengawetan Makanan dengan Irradiasi. 6-8 Juni 1993. PAIR-BATAN, Jakarta.
Slamet Budijanto, Dahrul Syah, Winiati Pudji Rahayu dan Halim
Nababan. 2003. Good Practices Dalam Rantai Pangan.
Badan POM. Jakarta.
Soeparno. 1994. Ilmu dan Teknologi Daging. Gadjah Mada
University Press. Yogyakarta.
Sofyan, R. 1984. Efek Kimia Radiasi Pada Komponen Utama
Bahan Makanan. PAIR-BATAN, Jakarta.
Sudarmadji. 1982. Bahan-bahan Pemanis. Agritech. Yogyakarta.
Taib E. 1987. Operasi Pengeringan Pada Pengolahan Hasil
Pertanian. Penerbit Melton Putra. Jakarta.
Tambunan, A.H., 1999. Pengembangan Metoda Pembekuan
Vakum Untuk Produk Pangan. Usulan Penelitian Hibah
Bersaing Perguruan Tinggi. Institut Pertanian Bogor.
Tien R Muchtadi. 1989. Teknologi Proses Pengolahan Pangan
Petunjuk Laboratorium. PAU Pangan dan Gizi. IPB. Bogor.
Winarno, F.G. 1984. Pengantar Teknologi Pangan. PT
Gramedia. Jakarta.
Winarno, F.G. 1993. Pangan, Gizi, Teknologi dan Konsumen.
Penerbit Gramedia Pustaka Utama. Jakarta.
Winarno, F.G., Srikandi Fardiaz dan D. Fardiaz. 1980. Pengantar Teknologi Pangan. PT Gramedia, Jakarta.
Winiati Pudji Rahayu, Halim Nababan, Slamet Budijanto dan Dahrul
Syah. 2003. Sistem Jaminan Mutu Pangan. Badan POM.
Jakarta.
Winiati Pudji Rahayu, Halim Nababan, Slamet Budijanto dan Dahrul
Syah. 2003. Bahan Tambahan Pangan. Badan POM. Jakarta.
Tidak ada komentar:
Posting Komentar
Kami sangat menerima pesan dan kritikan yang sifatnya membangun dari anda semua